An Improved Solution for Reactive Power Dispatch Problem Using Diversity-Enhanced Particle Swarm Optimization
Mini Vishnu and
Sunil Kumar T. K.
Additional contact information
Mini Vishnu: Electrical Engineering Department, Government Engineering College, Thrissur, Kerala 680009, India
Sunil Kumar T. K.: National Institute of Technology, Calicut, Kerala 673601, India
Energies, 2020, vol. 13, issue 11, 1-21
Abstract:
Well-structured reactive power policies and dispatch are major concerns of operation and control technicians of any power system. Obtaining a suitable reactive power dispatch for any given load condition of the system is a prime duty of the system operator. It reduces loss of active power occurring during transmission by regulating reactive power control variables, thus boosting the voltage profile, enhancing the system security and power transfer capability, thereby attaining an improvement in overall system operation. The reactive power dispatch (RPD) problem being a mixed-integer discrete continuous (MIDC) problem demands the solution to contain all these variable types. This paper proposes a methodology to achieve an optimal and practically feasible solution to the RPD problem through the diversity-enhanced particle swarm optimization (DEPSO) technique. The suggested method is characterized by the calculation of the diversity of each particle from its mean position after every iteration. The movement of the particles is decided based on the calculated diversity, thereby preventing both local optima stagnation and haphazard unguided wandering. DEPSO accounts for the accuracy of the variables used in the RPD problem by providing discrete values and integer values compared to other algorithms, which provide all continuous values. The competency of the proposed method is tested on IEEE 14-, 30-, and 118-bus test systems. Simulation outcomes show that the proposed approach is feasible and efficient in attaining minimum active power losses and minimum voltage deviation from the reference. The results are compared to conventional particle swarm optimization (PSO) and JAYA algorithms.
Keywords: reactive power dispatch; diversity-enhanced particle swarm optimization; static synchronous compensator (STATCOM); mixed-integer discrete continuous (MIDC) problem (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/11/2862/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/11/2862/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:11:p:2862-:d:367172
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().