EconPapers    
Economics at your fingertips  
 

Higher-Order Spectra Analysis-Based Diagnosis Method of Blades Biofouling in a PMSG Driven Tidal Stream Turbine

Lotfi Saidi, Mohamed Benbouzid, Demba Diallo, Yassine Amirat, Elhoussin Elbouchikhi and Tianzhen Wang
Additional contact information
Lotfi Saidi: Laboratory of Signal Image and Energy Mastery (SIME, LR 13ES03), Université de Tunis, ENSIT, Tunis 1008, Tunisia
Mohamed Benbouzid: Institut de Recherche Dupuy de Lôme (UMR CNRS 6027 IRDL), University of Brest, 29238 Brest, France
Demba Diallo: Engineering Logistics College, Shanghai Maritime University, Shanghai 201306, China
Yassine Amirat: Institut de Recherche Dupuy de Lôme (UMR CNRS 6027 IRDL), ISEN Yncréa Ouest, 29200 Brest, France
Elhoussin Elbouchikhi: Institut de Recherche Dupuy de Lôme (UMR CNRS 6027 IRDL), ISEN Yncréa Ouest, 29200 Brest, France
Tianzhen Wang: Engineering Logistics College, Shanghai Maritime University, Shanghai 201306, China

Energies, 2020, vol. 13, issue 11, 1-18

Abstract: Most electrical machines and drive signals are non-Gaussian and are highly nonlinear in nature. A useful set of techniques to examine such signals relies on higher-order statistics (HOS) spectral representations. They describe statistical dependencies of frequency components that are neglected by traditional spectral measures, namely the power spectrum (PS). One of the most used HOS is the bispectrum where examining higher-order correlations should provide further details and information about the conditions of electric machines and drives. In this context, the stator currents of electric machines are of particular interest because they are periodic, nonlinear, and cyclostationary. This current is, therefore, well adapted for analysis using bispectrum in the designing of an efficient condition monitoring method for electric machines and drives. This paper is, therefore, proposing a bispectrum-based diagnosis method dealing the with tidal stream turbine (TST) rotor blades biofouling issue, which is a marine environment natural process responsible for turbine rotor unbalance. The proposed bispectrum-based diagnosis method is verified using experimental data provided from a permanent magnet synchronous generator (PMSG)-based TST experiencing biofouling emulated by attachment on the turbine blade. Based on the achieved results, it can be concluded that the proposed diagnosis method has been very successful. Indeed, biofouling imbalance-related frequencies are clearly identified despite marine environmental nuisances (turbulences and waves).

Keywords: bispectrum; biofouling; diagnosis; spectral kurtosis; stator current; tidal stream turbine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/11/2888/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/11/2888/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:11:p:2888-:d:367618

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2888-:d:367618