EconPapers    
Economics at your fingertips  
 

A Study on Fundamental Waveform Shapes in Microscopic Electrical Load Signatures

Raneen Younis and Andreas Reinhardt
Additional contact information
Raneen Younis: Department of Informatics, TU Clausthal, 38678 Clausthal-Zellerfeld, Germany
Andreas Reinhardt: Department of Informatics, TU Clausthal, 38678 Clausthal-Zellerfeld, Germany

Energies, 2020, vol. 13, issue 12, 1-19

Abstract: The number of globally deployed smart meters is rising, and so are the sampling rates at which they can meter electrical consumption data. As a consequence thereof, the technological foundation is established to track the power intake of buildings at sampling rates up to several k Hz . Processing raw signal waveforms at such rates, however, imposes a high resource demand on the metering devices and data processing algorithms alike. In fact, the ensuing resource demand often exceeds the capabilities of the embedded systems present in current-generation smart meters. Consequently, the majority of today’s energy data processing algorithms are confined to the use of RMS values of the data instead, reported once per second or even less frequently. This entirely eliminates the spectral characteristics of the signal waveform (i.e., waveform trajectories of electrical voltage, current, or power) from the data, despite the wealth of information they have been shown to contain about the operational states of the operative appliances. In order to overcome this limitation, we pursue a novel approach to handle the ensuing volume of load signature data and simultaneously facilitate their analysis. Our proposed method is based on approximating the current intake of electrical appliances by means of parametric models, the determination of whose parameters only requires little computational power. Through the identification of model parameters from raw measurements, smart meters not only need to transmit less data, but the identification of individual loads in aggregate load signature data is facilitated at the same time. We conduct an analysis of the fundamental waveform shapes prevalent in the electrical power consumption data of more than 50 electrical appliances, and assess the induced approximation errors when replacing raw current consumption data by parametric models. Our results show that the current consumption of many household appliances can be accurately modeled by a small number of parameterizable waveforms.

Keywords: microscopic load signatures; waveform analysis; recurrent waveform patterns; parametric load models (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/12/3039/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/12/3039/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:12:p:3039-:d:370514

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3039-:d:370514