Optimal Coordination Strategies for Load Service Entity and Community Energy Systems Based on Centralized and Decentralized Approaches
Longxi Li
Additional contact information
Longxi Li: School of Economics and Management, China University of Geosciences, Wuhan 430074, China
Energies, 2020, vol. 13, issue 12, 1-22
Abstract:
The energy interaction among a load service entity and community energy systems in neighboring communities leads to a complex energy generation, storage, and transaction problem. A load service entity is formed by a local electricity generation system, storage system, and renewable energy resources, which can provide ancillary services to customers and the utility grid. This paper proposes two coordination schemes for the interaction of community-based energy systems and load service entities based on game-theoretic frameworks. The first one is a centralized coordination scheme with full cooperation, in which the load service entity and community energy systems jointly activate the local resources. The second one is set as a decentralized coordination scheme to obtain a relative balance of interests among the market participants in a Stackelberg framework. Two mathematical models are developed for the day-ahead decision-making of the above energy management schemes. The Shapley value method, Karush-Kuhn-Tucker conditions, and strong dual theory are applied to solve the complex coordination problems. Numerical study shows the effectiveness of the coordination strategies that all stakeholders benefit from the proposed coordination schemes and create a win–win situation. In addition, sensitivity analysis is conducted to study the effects of system configuration, energy demand, and energy prices on the economic performance of all stakeholders. The results can serve as references for business managers of the load service entity.
Keywords: coordination strategy; load service entity; community energy systems; centralized coordination scheme; decentralized coordination scheme; energy management (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/12/3202/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/12/3202/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:12:p:3202-:d:374051
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().