EconPapers    
Economics at your fingertips  
 

An Inverse Design Method for Airfoils Based on Pressure Gradient Distribution

Yufei Zhang, Chongyang Yan and Haixin Chen
Additional contact information
Yufei Zhang: School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
Chongyang Yan: School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
Haixin Chen: School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Energies, 2020, vol. 13, issue 13, 1-18

Abstract: An airfoil inverse design method is proposed by using the pressure gradient distribution as the design target. The adjoint method is used to compute the derivatives of the design target. A combination of the weighted drag coefficient and the target dimensionless pressure gradient is applied as the optimization objective, while the lift coefficient is considered as a constraint. The advantage of this method is that the designer can sketch a rough expectation of the pressure distribution pattern rather than a precise pressure coefficient under a certain lift coefficient and Mach number, which can greatly reduce the design iteration in the initial stage of the design process. Multiple solutions can be obtained under different objective weights. The feasibility of the method is validated by a supercritical airfoil and a supercritical natural laminar flow airfoil, which are designed based on the target pressure gradients on the airfoils. Eight supercritical airfoils are designed under different upper surface pressure gradients. The drag creep and drag divergence characteristics of the airfoils are numerically tested. The shockfree airfoil demonstrates poor performance because of a high suction peak and the double-shock phenomenon. The adverse pressure gradient on the upper surface before the shockwave needs to be less than 0.2 to maintain both good drag creep and drag divergence characteristics.

Keywords: inverse design; pressure gradient; supercritical airfoil; natural laminar flow; adjoint method (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/13/3400/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/13/3400/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:13:p:3400-:d:379423

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3400-:d:379423