EconPapers    
Economics at your fingertips  
 

Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect

Handriyanti Diah Puspitarini, Baptiste François, Marco Baratieri, Casey Brown, Mattia Zaramella and Marco Borga
Additional contact information
Handriyanti Diah Puspitarini: Department of Land, Environment, Agriculture, and Forestry, University of Padova, 35020 Legnaro (PD), Italy
Baptiste François: Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01003, USA
Marco Baratieri: Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
Casey Brown: Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01003, USA
Mattia Zaramella: Department of Land, Environment, Agriculture, and Forestry, University of Padova, 35020 Legnaro (PD), Italy
Marco Borga: Department of Land, Environment, Agriculture, and Forestry, University of Padova, 35020 Legnaro (PD), Italy

Energies, 2020, vol. 13, issue 16, 1-19

Abstract: Combined heat and power systems (CHP) produce heat and electricity simultaneously. Their resulting high efficiency makes them more attractive from the energy managers’ perspective than other conventional thermal systems. Although heat is a by-product of the electricity generation process, system operators usually operate CHP systems to satisfy heat demand. Electricity generation from CHP is thus driven by the heat demand, which follows the variability of seasonal temperature, and thus is not always correlated with the fluctuation of electricity demand. Consequently, from the perspective of the electricity grid operator, CHP systems can be seen as a non-controllable energy source similar to other renewable energy sources such as solar, wind or hydro. In this study, we investigate how ‘non-controllable’ electricity generation from CHP systems combines with ‘non-controllable’ electricity generation from solar photovoltaic panels (PV) and run-of-the river (RoR) hydropower at a district level. Only these three energy sources are considered within a 100% renewable mix scenario. Energy mixes with different shares of CHP, solar and RoR are evaluated regarding their contribution to total energy supply and their capacity to reduce generation variability. This analysis is carried out over an ensemble of seventeen catchments in North Eastern Italy located along a climate transect ranging from high elevation and snow dominated head-water catchments to rain-fed and wet basins at lower elevations. Results show that at a district scale, integration of CHP systems with solar photovoltaic and RoR hydropower leads to higher demand satisfaction and lower variability of the electricity balance. Results also show that including CHP in the energy mix modifies the optimal relative share between solar and RoR power generation. Results are consistent across the climate transect. For some districts, using the electricity from CHP might also be a better solution than building energy storage for solar PV.

Keywords: run-of-the river hydropower; solar power; combined heat and power; succeed indicators (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/16/4156/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/16/4156/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:16:p:4156-:d:397626

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4156-:d:397626