Thermodynamic and Economic Feasibility of Energy Recovery from Pressure Reduction Stations in Natural Gas Distribution Networks
Piero Danieli,
Gianluca Carraro and
Andrea Lazzaretto
Additional contact information
Piero Danieli: Department of Industrial Engineering, University of Padova, 35122 Padova, PD, Italy
Gianluca Carraro: Department of Industrial Engineering, University of Padova, 35122 Padova, PD, Italy
Andrea Lazzaretto: Department of Industrial Engineering, University of Padova, 35122 Padova, PD, Italy
Energies, 2020, vol. 13, issue 17, 1-19
Abstract:
A big amount of the pressure energy content in the natural gas distribution networks is wasted in throttling valves of pressure reduction stations (PRSs). Just a few energy recovery systems are currently installed in PRSs and are mostly composed of radial turboexpanders coupled with cogeneration internal combustion engines or gas-fired heaters providing the necessary preheating. This paper clarifies the reason for the scarce diffusion of energy recovery systems in PRSs and provides guidelines about the most feasible energy recovery technologies. Nine thousand PRSs are monitored and allocated into 12 classes, featuring different expansion ratios and available power. The focus is on PRSs with 1-to-20 expansion ratio and 1-to-500 kW available power. Three kinds of expanders are proposed in combination with different preheating systems based on boilers, heat pumps, or cogeneration engines. The goal is to identify, for each class, the most feasible combination by looking at the minimum payback period and maximum net present value. Results show that small size volumetric expanders with low expansion ratios and coupled with gas-fired heaters have the highest potential for large-scale deployment of energy recovery from PRSs. Moreover, the total recoverable energy using the feasible recovery systems is approximately 15% of the available energy.
Keywords: energy recovery; natural gas distribution network; natural gas expander; natural gas engineering; economic analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/17/4453/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/17/4453/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:17:p:4453-:d:405378
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().