EconPapers    
Economics at your fingertips  
 

Synergy of Thermochemical Treatment of Dried Distillers Grains with Solubles with Bioethanol Production for Increased Sustainability and Profitability

Samuel O’Brien, Jacek A. Koziel, Chumki Banik and Andrzej Białowiec
Additional contact information
Samuel O’Brien: Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
Jacek A. Koziel: Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
Chumki Banik: Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
Andrzej Białowiec: Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA

Energies, 2020, vol. 13, issue 17, 1-14

Abstract: The bioethanol industry continues improving sustainability, specifically focused on plant energy and GHG emission management. Dried distiller grains with solubles (DDGS) is a byproduct of ethanol fermentation and is used for animal feed. DDGS is a relatively low-value bulk product that decays, causes odor, and is challenging to manage. The aim of this research was to find an alternative, value-added-type concept for DDGS utilization. Specifically, we aimed to explore the techno-economic feasibility of torrefaction, i.e., a thermochemical treatment of DDGS requiring low energy input, less sophisticated equipment, and resulting in fuel-quality biochar. Therefore, we developed a research model that addresses both bioethanol production sustainability and profitability due to synergy with the torrefaction of DDGS and using produced biochar as marketable fuel for the plant. Our experiments showed that DDGS-based biochar (CSF—carbonized solid fuel) lower calorific value may reach up to 27 MJ?kg −1 d.m. (dry matter) Specific research questions addressed were: What monetary profits and operational cost reductions could be expected from valorizing DDGS as a source of marketable biorenewable energy, which may be used for bioethanol production plant’s demand? What environmental and financial benefits could be expected from valorizing DDGS to biochar and its reuse for natural gas substitution? Modeling indicated that the valorized CSF could be produced and used as a source of energy for the bioethanol production plant. The use of heat generated from CSF incineration supplies the entire heat demand of the torrefaction unit and the heat demand of bioethanol production (15–30% of the mass of CSF and depending on the lower heating value (LHV) of the CSF produced). The excess of 70–85% of the CSF produced has the potential to be marketed for energetic, agricultural, and other applications. Preliminary results show the relationship between the reduction of the environmental footprint (~24% reduction in CO 2 emissions) with the introduction of comprehensive on-site valorization of DDGS. The application of DDGS torrefaction and CSF recycling may be a source of the new, more valuable revenues and bring new perspectives to the bioethanol industry to be more sustainable and profitable, including during the COVID-19 pandemic and other shocks to market conditions.

Keywords: biofuel; biorenewables; corn; DDGS; ethanol; sustainability; torrefaction; waste-to-energy; waste-to-carbon; CSF (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/17/4528/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/17/4528/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:17:p:4528-:d:407175

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4528-:d:407175