EconPapers    
Economics at your fingertips  
 

On-Line Diagnosis and Fault State Classification Method of Photovoltaic Plant

Jun-Hyun Shin and Jin-O Kim
Additional contact information
Jun-Hyun Shin: Department of Electrical Engineering, Hany4ang University, Seoul 04763, Korea
Jin-O Kim: Department of Electrical Engineering, Hany4ang University, Seoul 04763, Korea

Energies, 2020, vol. 13, issue 17, 1-12

Abstract: This paper presents an on-line diagnosis method for large photovoltaic (PV) power plants by using a machine learning algorithm. Most renewable energy output power is decreased due to the lack of management tools and the skills of maintenance engineers. Additionally, many photovoltaic power plants have a long down-time due to the absence of a monitoring system and their distance from the city. The IEC 61724-1 standard is a Performance Ratio (PR) index that evaluates the PV power plant performance and reliability. However, the PR index has a low recognition rate of the fault state in conditions of low irradiation and bad weather. This paper presents a weather-corrected index, linear regression method, temperature correction equation, estimation error matrix, clearness index and proposed variable index, as well as a one-class Support Vector Machine (SVM) method and a kernel technique to classify the fault state and anomaly output power of PV plants.

Keywords: photovoltaic plant; on-line diagnosis; machine learning; operation and maintenance; health index; reliability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/17/4584/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/17/4584/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:17:p:4584-:d:408640

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4584-:d:408640