EconPapers    
Economics at your fingertips  
 

Parametric Study of Various Thermodynamic Cycles for the Use of Unconventional Blends

Odi Fawwaz Alrebei, Philip Bowen and Agustin Valera Medina
Additional contact information
Odi Fawwaz Alrebei: Mechanical and Aerospace Engineering Department, Cardiff University, Cardiff CF24 3AA, UK
Philip Bowen: Mechanical and Aerospace Engineering Department, Cardiff University, Cardiff CF24 3AA, UK
Agustin Valera Medina: Mechanical and Aerospace Engineering Department, Cardiff University, Cardiff CF24 3AA, UK

Energies, 2020, vol. 13, issue 18, 1-16

Abstract: This paper aims to conduct a parametric study for five gas turbine cycles (namely, simple, heat exchanged, free turbine and simple cycle, evaporative, and humidified) using a CO 2 -argon-steam-oxyfuel (CARSOXY) mixture as a working fluid to identify their optimal working conditions with respect to cycle efficiency and specific work output. The performance of the five cycles using CARSOXY is estimated for wet and dry compression, and a cycle is suggested for each range of working conditions. The results of this paper are based on MATLAB codes, which have been developed to conduct the cycle analysis for CARSOXY gas turbines, assuming a stoichiometric condition with an equivalence ratio of 1.0. Analyses are based on the higher heating value (HHV) of methane as fuel. This paper also identifies domains of operating conditions for each cycle, where the efficiency of CARSOXY cycles can be increased by up to 12% compared to air-driven cycles. The CARSOXY heat exchanged cycle has the highest efficiency among the other CARSOXY cycles in the compressor pressure ratio domain of 2–3 and 6–10, whereas, at 3–6, the humidified cycle has the highest efficiency. The evaporative cycle has intermediate efficiency values, while the simple cycle and the free turbine-simple cycle have the lowest efficiencies amongst the five cycles. Additionally, a 10% increase in the cycle efficiency can be theoretically achieved by using the newly suggested CARSOXY blend that has the molar fractions of 47% argon, 10% carbon dioxide, 10% H 2 O, and 33% oxyfuel at low compressor inlet temperatures, thus theoretically enabling the use of carbon capture technologies.

Keywords: gas turbine cycle; complex cycle; power generation; CARSOXY (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/18/4656/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/18/4656/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:18:p:4656-:d:410213

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4656-:d:410213