EconPapers    
Economics at your fingertips  
 

Dynamic Electro-Thermal PV Temperature and Power Output Prediction Model for Any PV Geometries in Free-Standing and BIPV Systems Operating under Any Environmental Conditions

Eleni Kaplani and Socrates Kaplanis
Additional contact information
Eleni Kaplani: Engineering, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK
Socrates Kaplanis: Renewable Energy Systems Lab, University of Peloponnese, 26334 Patra, Greece

Energies, 2020, vol. 13, issue 18, 1-20

Abstract: PV temperature significantly affects the module’s power output and final system yield, and its accurate prediction can serve the forecasting of PV power output, smart grid operations, online PV diagnostics and dynamic predictive management of Building Integrated Photovoltaic (BIPV) systems. This paper presents a dynamic PV temperature prediction model based on transient Energy Balance Equations, incorporating theoretical expressions for all heat transfer processes, natural convection, forced convection, conduction and radiation exchanges between both module sides and the environment. The algorithmic approach predicts PV temperature at the centre of the cell, the back and the front glass cover with fast convergence and serves the PV power output prediction. The simulation model is robust, predicting PV temperature with high accuracy at any environmental conditions, PV inclination, orientation, wind speed and direction, and mounting configurations, free-standing and BIPV. These, alongside its theoretical basis, ensure the model’s wide applicability and clear advantage over existing PV temperature prediction models. The model is validated for a wide range of environmental conditions, PV geometries and mounting configurations with experimental data from a sun-tracking, a fixed angle PV and a BIPV system. The deviation between predicted and measured power output for the fixed-angle and the sun-tracking PV systems was estimated at ?1.4% and 1.9%, respectively. The median of the temperature difference between predicted and measured values was as low as 0.5 °C for the sun-tracking system, and for all cases, the predicted temperature profiles were closely matching the measured profiles. The PV temperature and power output predicted by this model are compared to the results produced by other well-known PV temperature models, illustrating its high predictive capacity, accuracy and robustness.

Keywords: PV temperature prediction; electro-thermal model; transient energy balance equations; PV power prediction; sun-tracking PV; BIPV (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/18/4743/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/18/4743/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:18:p:4743-:d:412210

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4743-:d:412210