EconPapers    
Economics at your fingertips  
 

Sliding Mode Control for Micro Turbojet Engine Using Turbofan Power Ratio as Control Law

Khaoula Derbel and Károly Beneda
Additional contact information
Khaoula Derbel: Department of Aeronautics, Naval Architecture and Railway Vehicles, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, H1111 Budapest, Hungary
Károly Beneda: Department of Aeronautics, Naval Architecture and Railway Vehicles, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, H1111 Budapest, Hungary

Energies, 2020, vol. 13, issue 18, 1-23

Abstract: The interest in turbojet engines was emerging in the past years due to their simplicity. The purpose of this article is to investigate sliding mode control (SMC) for a micro turbojet engine based on an unconventional compound thermodynamic parameter called Turbofan Power Ratio (TPR) and prove its advantage over traditional linear methods and thrust parameters. Based on previous research by the authors, TPR can be applied to single stream turbojet engines as it varies proportionally to thrust, thus it is suitable as control law. The turbojet is modeled by a linear, parameter-varying structure, and variable structure sliding mode control has been selected to control the system, as it offers excellent disturbance rejection and provides robustness against discrepancies between mathematical model and real plant as well. Both model and control system have been created in MATLAB ® Simulink ® , data from real measurement have been taken to evaluate control system performance. The same assessment is conducted with conventional Proportional-Integral-Derivative (PID) controllers and showed the superiority of SMC, furthermore TPR computation using turbine discharge temperature was proven. Based on the results of the simulation, a controller layout is proposed and its feasibility is investigated. The utilization of TPR results in more accurate thrust output, meanwhile it allows better insight into the thermodynamic process of the engine, hence it carries an additional diagnostic possibility.

Keywords: gas turbine engine; turbofan power ratio; sliding mode control; control; micro turbojet; simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/18/4841/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/18/4841/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:18:p:4841-:d:414473

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4841-:d:414473