EconPapers    
Economics at your fingertips  
 

The Role of Ionic Liquids in the Lignin Separation from Lignocellulosic Biomass

Isa Hasanov, Merlin Raud and Timo Kikas
Additional contact information
Isa Hasanov: Institute of Technology, Chair of Biosystems Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51006 Tartu, Estonia
Merlin Raud: Institute of Technology, Chair of Biosystems Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51006 Tartu, Estonia
Timo Kikas: Institute of Technology, Chair of Biosystems Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51006 Tartu, Estonia

Energies, 2020, vol. 13, issue 18, 1-24

Abstract: Lignin is a natural polymer, one that has an abundant and renewable resource in biomass. Due to a tendency towards the use of biochemicals, the efficient utilization of lignin has gained wide attention. The delignification of lignocellulosic biomass makes its fractions (cellulose, hemicellulose, and lignin) susceptible to easier transformation to many different commodities like energy, chemicals, and materials that could be produced using the biorefinery concept. This review gives an overview of the field of lignin separation from lignocellulosic biomass and changes that occur in the biomass during this process, as well as taking a detailed look at the influence of parameters that lead the process of dissolution. According to recent studies, a number of ionic liquids (ILs) have shown a level of potential for industrial scale production in terms of the pretreatment of biomass. ILs are perspective green solvents for pretreatment of lignocellulosic biomass. These properties in ILs enable one to disrupt the complex structure of lignocellulose. In addition, the physicochemical properties of aprotic and protic ionic liquids (PILs) are summarized, with those properties making them suitable solvents for lignocellulose pretreatment which, especially, target lignin. The aim of the paper is to focus on the separation of lignin from lignocellulosic biomass, by keeping all components susceptible for biorefinery processes. The discussion includes interaction mechanisms between lignocellulosic biomass subcomponents and ILs to increase the lignin yield. According to our research, certain PILs have potential for the cost reduction of LC biomass pretreatment on the feasible separation of lignin.

Keywords: lignin; lignocellulose; biochemicals; delignification; ionic liquids (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/18/4864/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/18/4864/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:18:p:4864-:d:414984

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4864-:d:414984