EconPapers    
Economics at your fingertips  
 

The Modelling and Experimental Validation of a Cryogenic Packed Bed Regenerator for Liquid Air Energy Storage Applications

Robert Morgan, Christian Rota, Emily Pike-Wilson, Tim Gardhouse and Cian Quinn
Additional contact information
Robert Morgan: Advanced Engineering Centre, University of Brighton, Brighton BN2 4AT, UK
Christian Rota: Advanced Engineering Centre, University of Brighton, Brighton BN2 4AT, UK
Emily Pike-Wilson: Advanced Engineering Centre, University of Brighton, Brighton BN2 4AT, UK
Tim Gardhouse: Highview Power, London EC1Y 0TH, UK
Cian Quinn: Highview Power, London EC1Y 0TH, UK

Energies, 2020, vol. 13, issue 19, 1-17

Abstract: Electrical energy storage will play a key role in the transition to a low carbon energy network. Liquid air energy storage (LAES) is a thermal–mechanical energy storage technology that converts electricity to thermal energy. This energy is stored in three ways: as latent heat in a tank of liquid air, as warm sensible heat in a hot tank and as cold sensible heat in a packed bed regenerator (PBR), which is the focus of this paper. A PBR was selected because the temperature range (−196 °C to 10 °C) prohibits storage in liquid media, as most fluids will undergo a phase change over a near 200 °C temperature range. A change of phase in the storage media would result in exergy destruction and loss of efficiency of the LAES device. Gravel was selected as the storage media, as (a) many gravels are compatible with cryogenic temperatures and (b) the low cost of the material if it can be used with minimal pre-treatment. PBRs have been extensively studied and modelled such as the work by Schumann, described by Wilmott and later by White. However, these models have not been applied to and validated for a low temperature store using gravel. In the present research, a comprehensive modelling and experimental program was undertaken to produce a validated model of a low-temperature PBR. This included a study of the low-temperature properties of various candidate gravels, implementation of a modified Schumann model and validation using a laboratory scale packed bed regenerator. Two sizes of gravel at a range of flow rates were tested. Good agreement between the predicted and measured temperature fields in the PBR was achieved when a correlation factor was applied to account for short circuiting of the storage media through flow around the interface between the walls of the regenerator and storage media.

Keywords: liquid air energy storage; packed bed regenerator; long duration storage; cryogenic (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/19/5155/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/19/5155/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:19:p:5155-:d:423335

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5155-:d:423335