Micro Nuclear Reactors: Potential Replacements for Diesel Gensets within Micro Energy Grids
Hossam A. Gabbar,
Muhammad R. Abdussami and
Md. Ibrahim Adham
Additional contact information
Hossam A. Gabbar: Faculty of Energy Systems and Nuclear Science, Ontario Tech University (UOIT), Oshawa, ON L1G 0C5, Canada
Muhammad R. Abdussami: Faculty of Energy Systems and Nuclear Science, Ontario Tech University (UOIT), Oshawa, ON L1G 0C5, Canada
Md. Ibrahim Adham: Faculty of Energy Systems and Nuclear Science, Ontario Tech University (UOIT), Oshawa, ON L1G 0C5, Canada
Energies, 2020, vol. 13, issue 19, 1-38
Abstract:
Resilient operation of medium/large scale off-grid energy systems, which is a key challenge for energy crisis solutions, requires continuous and sustainable energy resources. Conventionally, micro energy grids (MEGs) are adopted to supply electricity and thermal energy simultaneously. Fossil-fired gensets, such as diesel generators, are indispensable components for off-grid MEGs due to the intermittent nature of renewable energy sources (RESs). However, fossil-fired gensets emit a significant amount of greenhouse gases (GHGs). Therefore, this study investigates an alternative source as an economical and environmental replacement for diesel gensets that can reduce GHG emissions and ensure system reliability. A MEG is developed in this paper to support a considerably large-scale electric and thermal demand at Ontario Tech University (UOIT). Different sizes of diesel gensets and RESs, such as solar, wind, hydro, and biomass, are combined in the MEG for off-grid applications. To evaluate diesel gensets’ competency, the diesel genset is substituted by an emission-free generation source named microreactor (MR). The fossil-fired MEG and MR-based MEG are optimized by an intelligent optimization technique, namely particle swarm optimization (PSO). The objective of the PSO is to minimize the net present cost (NPC). The simulation results show that MR-based MEG could be an excellent replacement for a diesel genset in terms of NPC and selected key performance indicators (KPIs). A comprehensive sensitivity analysis is also carried out to validate the simulation results.
Keywords: micro energy grid; diesel genset; microreactor; renewable energy sources; optimal system; sensitivity analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/19/5172/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/19/5172/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:19:p:5172-:d:423830
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().