Analysis and Implementation of a Phase-Shift Pulse-Width Modulation Converter with Auxiliary Winding Turns
Bor-Ren Lin
Additional contact information
Bor-Ren Lin: Department of Electrical Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan
Energies, 2020, vol. 13, issue 1, 1-19
Abstract:
A phase-shift pulse-width modulation converter is studied and investigated for railway vehicle or solar cell power converter applications with wide voltage operation. For railway vehicle applications, input voltage range of dc converters is requested to have 30–40% voltage variation of the nominal input voltage. The nominal input voltages of dc converters on railway vehicles applications may be 37.5 V, 48 V, 72 V, 96 V and 110 V. Therefore, a new dc converter with wide input voltage operation from 25 to 150 V is presented to withstand different nominal input voltage levels such as 37.5–110 V on railway power units. To realize wide input voltage operation, an auxiliary switch and auxiliary transformer windings are used on output side of conventional full-bridge converter to have different voltage gains under different input voltage values. Phase-shift pulse-width modulation is adopted in the developed dc converter to accomplish soft switching operation on power switches. To confirm and validate the practicability of the presented converter, experiments based on a 300 W prototype were provided in this paper.
Keywords: PS-PWM (Phase-shift pulse-width modulation); power converter; full-bridge converter (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/1/222/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/1/222/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:1:p:222-:d:304621
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().