Research on the Influence of Euro VI Diesel Engine Assembly Consistency on NOx Emissions
Wei Yan,
Tengyao Dou,
Jinbo Wang,
Na Mei and
Guoxiang Li
Additional contact information
Wei Yan: School of Energy and Power Engineering, Shandong University, Jinan 250061, China
Tengyao Dou: School of Energy and Power Engineering, Shandong University, Jinan 250061, China
Jinbo Wang: Weichai Holding Group Co., Ltd., Weifang 262100, China
Na Mei: School of Energy and Power Engineering, Shandong University, Jinan 250061, China
Guoxiang Li: Weichai Holding Group Co., Ltd., Weifang 262100, China
Energies, 2020, vol. 13, issue 20, 1-12
Abstract:
The assembly consistency of a diesel engine will affect its nitrogen oxides (NOx) emission variation. In order to improve the NOx emissions of diesel engines, a study was carried out based on the assembly tolerance variation of the diesel engine’s combustion system. Firstly, a diesel engine which meets the Euro VI standards together with the experimental data is obtained. The mesh model and combustion model of the engine combustion system are built in the Converge software (version 2.4, Tecplot, Bellevue, DC, USA), and the experimental data is used to calibrate the combustion model obtained in the Converge software. Then, the four-factor and three-level orthogonal simulation experiments are carried out on the dimension parameters that include nozzle extension height, throat diameter, shrinkage diameter and combustion chamber depth. Through mathematical analysis on the experimental data, the results show that the variation of nozzle extension height and combustion chamber depth have a strong influence on NOx emission results, and the variation of combustion chamber diameter also has a weak influence on NOx production. According to the regression model obtained from the analysis, there is a quadratic function relating the nozzle extension height and NOx emissions and the amount of NOx increases with increasing nozzle extension height. The relationship between emission performance and size parameters is complex. In the selected size range, the influence of the variation of the chamber diameter on NOx is linear. The variation of the chamber depth also has an effect on NOx production, and the simulation results vary with the change of assembly tolerance variation. Thus, in the engine assembly process, it is necessary to strictly control the nozzle extension height and combustion chamber depth. The research results are useful to improve the NOx emission of diesel engine and provide a basis for the control strategy of selective catalytic reduction (SCR) devices.
Keywords: assembly consistency; NOx emissions; diesel engine; numerical simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/20/5335/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/20/5335/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:20:p:5335-:d:427429
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().