Thermal and Economic Analysis of Multi-Effect Concentration System by Utilizing Waste Heat of Flue Gas for Magnesium Desulfurization Wastewater
Mingwei Yan and
Yuetao Shi
Additional contact information
Mingwei Yan: School of Energy and Power Engineering, Shandong University, 17923 Jingshi Road, Jinan 250061, China
Yuetao Shi: School of Energy and Power Engineering, Shandong University, 17923 Jingshi Road, Jinan 250061, China
Energies, 2020, vol. 13, issue 20, 1-20
Abstract:
Compared with limestone-based wet flue gas desulfurization (WFGD), magnesia-based WFGD has many advantages, but it is not popular in China, due to the lack of good wastewater treatment schemes. This paper proposes the wastewater treatment scheme of selling magnesium sulfate concentrate, and makes thermal and economic analysis for different concentration systems in the scheme. Comparisons of different concentration systems for 300 MW power plant were made to determine which system is the best. The results show that the parallel-feed benchmark system is better than the forward-feed benchmark system, and the parallel-feed optimization system with the 7-process is better than other parallel-feed optimization systems. Analyses of the parallel-feed optimization system with 7-process were made in 300, 600, and 1000 MW power plants. The results show that the annual profit of concentration system for a 300, 600, and 1000 MW power plant is about 2.58 million, 5.35 million, and 7.89 million Chinese Yuan (CNY), respectively. In different concentration systems of the scheme for selling magnesium sulfate concentrate, the parallel-feed optimization system with the 7-process has the best performance. The scheme can make a good profit in 300, 600, and 1000 MW power plants, and it is very helpful for promoting magnesia-based WFGD in China.
Keywords: economic performance; flue gas waste heat; magnesium desulfurization wastewater; multi-effect concentration; thermal performance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/20/5384/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/20/5384/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:20:p:5384-:d:428590
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().