Remuneration of Distribution Grids for Enhanced Regenerative Electricity Deployment—An Analysis and Model for the Analysis of Grid Structures in Southern Germany Using Linear Programming
Tobias Rösch,
Peter Treffinger and
Barbara Koch
Additional contact information
Tobias Rösch: Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany
Peter Treffinger: Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany
Barbara Koch: Forest Research Institute Baden-Württemberg (FVA), 79106 Freiburg, Germany
Energies, 2020, vol. 13, issue 20, 1-26
Abstract:
Ecological concerns on the climatic effects of the emissions from electricity production stipulate the remuneration of electricity grids to accept growing amounts of intermittent regenerative electricity feed-in from wind and solar power. Germany’s eager political target to double regenerative electricity production by 2030 puts pressure on grid operators to adapt and restructure their transmission and distribution grids. The ability of local distribution grids to operate autonomous of transmission grid supply is essential to stabilize electricity supply at the level of German federal states. Although congestion management and collaboration at the distribution system operator (DSO) level are promising approaches, relatively few studies address this issue. This study presents a methodology to assess the electric energy balance for the low-voltage grids in the German federal state of Baden-Württemberg, assuming the typical load curves and the interchange potential among local distribution grids by means of linear programming of the supply function and for typical seasonal electricity demands. The model can make a statement about the performance and development requirements for grid architecture for scenarios in 2035 and 2050 when regenerative energies will—according to present legislation—account for more than half of Germany’s electricity supply. The study details the amendment to Baden-Württemberg’s electricity grid required to fit the system to the requirements of regenerative electricity production. The suggested model for grid analysis can be used in further German regions and internationally to systematically remunerate electricity grids for the acceptance of larger amounts of regenerative electricity inflows. This empirical study closes the research gap of assessing the interchange potential among DSO and considers usual power loads and simultaneously usual electricity inflows.
Keywords: electrical power grids; photovoltaic/wind energy; feed-in; linear programming; optimization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/20/5385/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/20/5385/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:20:p:5385-:d:428600
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().