EconPapers    
Economics at your fingertips  
 

Geophysical Prospecting for Geothermal Resources in the South of the Duero Basin (Spain)

Ignacio Martín Nieto, Pedro Carrasco García, Cristina Sáez Blázquez, Arturo Farfán Martín, Diego González-Aguilera and Javier Carrasco García
Additional contact information
Ignacio Martín Nieto: Department of Cartographic and Land Engineering, University of Salamanca, Higher Polytechnic School of Avila, Hornos Caleros 50, 05003 Avila, Spain
Pedro Carrasco García: Department of Cartographic and Land Engineering, University of Salamanca, Higher Polytechnic School of Avila, Hornos Caleros 50, 05003 Avila, Spain
Cristina Sáez Blázquez: Department of Cartographic and Land Engineering, University of Salamanca, Higher Polytechnic School of Avila, Hornos Caleros 50, 05003 Avila, Spain
Arturo Farfán Martín: Department of Cartographic and Land Engineering, University of Salamanca, Higher Polytechnic School of Avila, Hornos Caleros 50, 05003 Avila, Spain
Diego González-Aguilera: Department of Cartographic and Land Engineering, University of Salamanca, Higher Polytechnic School of Avila, Hornos Caleros 50, 05003 Avila, Spain
Javier Carrasco García: Department of Cartographic and Land Engineering, University of Salamanca, Higher Polytechnic School of Avila, Hornos Caleros 50, 05003 Avila, Spain

Energies, 2020, vol. 13, issue 20, 1-22

Abstract: The geothermal resources in Spain have been a source of deep research in recent years and are, in general, well-defined. However, there are some areas where the records from the National Institute for Geology and Mining show thermal activity from different sources despite no geothermal resources being registered there. This is the case of the area in the south of the Duero basin where this research was carried out. Seizing the opportunity of a deep borehole being drilled in the location, some geophysical resources were used to gather information about the geothermal properties of the area. The employed geophysical methods were time-domain electromagnetics (TDEM) and borehole logging; the first provided information about the depth of the bedrock and the general geological structure, whereas the second one gave more detail on the geological composition of the different layers and a temperature record across the whole sounding. The results allowed us to establish the geothermal gradient of the area and to discern the depth of the bedrock. Using the first 200 m of the borehole logging, the thermal conductivity of the ground for shallow geothermal systems was estimated.

Keywords: geothermal resources; geophysical prospecting; time-domain electromagnetics; borehole logging; geothermal gradient; thermal conductivity (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/20/5397/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/20/5397/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:20:p:5397-:d:428864

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5397-:d:428864