EconPapers    
Economics at your fingertips  
 

Comparison of Performance-Assessment Methods for Residential PV Battery Systems

Fabian Niedermeyer and Martin Braun
Additional contact information
Fabian Niedermeyer: Fraunhofer Institute for Energy Economics and Energy System Technology, Koenigstor 59, 34119 Kassel, Germany
Martin Braun: Fraunhofer Institute for Energy Economics and Energy System Technology, Koenigstor 59, 34119 Kassel, Germany

Energies, 2020, vol. 13, issue 21, 1-34

Abstract: Declining costs for high-performance batteries are leading to a global increased use of storage systems in residential buildings. Especially in conjunction with reduced photovoltaic (PV) feed-in tariffs, a large market has been developed for PV battery systems to increase self-sufficiency. They differ in the type of coupling between PV and battery, the nominal capacities of their components, and their degree of integration. High system performance is particularly important to achieve profitability for the operator. This paper presents and evaluates methods for a uniform determination of PV battery system performance. Already the requirement analysis reveals that a performance comparison of PV battery systems must cover the efficiency and effectiveness during system operation. A method based on a derivation of key performance indicators (KPIs) for these two criteria through an application test is proposed. It is evaluated by comparison to other methods, such as the System Performance Index (SPI) and aggregation of conversion and storage efficiency. These methods are applied with five systems in a laboratory test bench to identify their advantages and drawbacks. Here, a particular focus is on compliance with the initially formulated requirements in terms of both test procedures and KPI derivations. Analysis revealed that the proposed method addresses these requirements well, and is beneficial in terms of result comprehensibility and KPI validity.

Keywords: photovoltaic systems; residential battery systems; PV battery systems; performance assessment; inverter efficiency; laboratory test procedures; key performance indicators; test profiles; residential power supply (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/21/5529/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/21/5529/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:21:p:5529-:d:433115

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5529-:d:433115