The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine
Rickard Solsjö,
Mehdi Jangi,
Bengt Johansson and
Xue-Song Bai
Additional contact information
Rickard Solsjö: Department of Energy Sciences, Lund University, Box 118, 22100 Lund, Sweden
Mehdi Jangi: Department of Energy Sciences, Lund University, Box 118, 22100 Lund, Sweden
Bengt Johansson: Department of Energy Sciences, Lund University, Box 118, 22100 Lund, Sweden
Xue-Song Bai: Department of Energy Sciences, Lund University, Box 118, 22100 Lund, Sweden
Energies, 2020, vol. 13, issue 21, 1-18
Abstract:
This paper presents a numerical investigation of the ignition and combustion process of a primary reference fuel in a partially premixed light-duty internal combustion (PPC) engine. Partially pre-mixed combustion is achieved by employing a multiple injection strategy with three short injection events of fuel pulses. The timing of the first two fuel pulses, 48 and 22 crank angle degrees before top dead center, are chosen with the purpose to stratify the fuel and air charge, whereas the third injection, at five crank angle degrees before top dead center, serves as an actuator of the main heat release. In addition to this baseline injection, three alternative injection strategies are studied, including a split-fuel two-injection strategy and modified triple-injection strategies. Large eddy simulations are employed utilizing a skeletal chemical kinetic mechanism for primary reference fuel capable of capturing the low-temperature ignition and the high temperature combustion. The large eddy simulation (LES) results are compared with experiments in an optical accessible engine. The results indicate that the first ignition sites are in the bowl region where the temperature is relatively higher, and the reaction fronts thereafter propagate in the swirl direction and towards the centerline of the cylinder. The charge from the first two injections initially undergoes low-temperature reactions and thereafter high-temperature reservoirs are formed in the bowl region. The main heat-release is initiated in the engine when the fuel from the third injection reaches the high-temperature reservoirs. Finally, the remaining fuel in the lean mixtures from the first two injections is oxidized. By variation of the injection strategy, two trends are identified: (1) by removing the second injection a higher intake temperature is required to enable the ignition of the charge, and (2) by retarding second injection, a longer ignition delay is identified. Both can be explained by the stratification of fuel and air mixture, and the resulting reactivity in various equivalence ratio and temperature ranges. The LES results reveal the details of the charge stratification and the subsequent heat release process. The present results indicate a rather high sensitivity of partially premixed combustion process to the injection strategies.
Keywords: partially premixed combustion; multiple injection strategy; primary reference fuel; low-temperature combustion; internal combustion engines; large eddy simulations (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/21/5535/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/21/5535/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:21:p:5535-:d:433025
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().