An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems
Saleh Abujarad,
Mohd Wazir Mustafa,
Jasrul Jamani Jamian,
Abdirahman M. Abdilahi,
Jeroen D. M. De Kooning,
Jan Desmet and
Lieven Vandevelde
Additional contact information
Saleh Abujarad: Department of Electromechanical, Systems and Metal Engineering, Ghent University, Tech Lane Ghent Science Park—Campus Ardoyen, Technologiepark Zwijnaarde 131, B-9052 Ghent, Belgium
Mohd Wazir Mustafa: School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
Jasrul Jamani Jamian: School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
Abdirahman M. Abdilahi: School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
Jeroen D. M. De Kooning: Department of Electromechanical, Systems and Metal Engineering, Ghent University, Tech Lane Ghent Science Park—Campus Ardoyen, Technologiepark Zwijnaarde 131, B-9052 Ghent, Belgium
Jan Desmet: Department of Electromechanical, Systems and Metal Engineering, Ghent University, Tech Lane Ghent Science Park—Campus Ardoyen, Technologiepark Zwijnaarde 131, B-9052 Ghent, Belgium
Lieven Vandevelde: Department of Electromechanical, Systems and Metal Engineering, Ghent University, Tech Lane Ghent Science Park—Campus Ardoyen, Technologiepark Zwijnaarde 131, B-9052 Ghent, Belgium
Energies, 2020, vol. 13, issue 21, 1-19
Abstract:
With the increasing shares of intermittent renewable sources in the grid, it becomes increasingly essential to quantify the requirements of the power systems flexibility. In this article, an adjusted weight flexibility metric (AWFM) is developed to quantify the available flexibility within individual generators as well as within the overall system. The developed metric is useful for power system operators who require a fast, simple, and offline metric. This provides a more realistic and accurate quantification of the available technical flexibility without performing time-consuming multi-temporal simulations. Another interesting feature is that it can be used to facilitate scenario comparisons. This is achieved by developing a new framework to assure the consistency of the metric and by proposing a new adjusted weighting mechanism based on correlation analysis and analytic hierarchy process (AHP). A new ranking approach based on flexibility was also proposed to increase the share of the renewable energy sources (RESs). The proposed framework was tested on the IEEE RTS-96 test-system. The results demonstrate the consistency of the AWFM. Moreover, the results show that the proposed metric is adaptive as it automatically adjusts the flexibility index with the addition or removal of generators. The new ranking approach proved its ability to increase the wind share from 28% to 37.2% within the test system. The AWFM can be a valuable contribution to the field of flexibility for its ability to provide systematic formulation for the precise analysis and accurate assessment of inherent technical flexibility for a low carbon power system.
Keywords: power system flexibility; flexibility quantification; adjusted weight flexibility metric (AWFM); power system operations; flexibility parameters; renewable energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/21/5658/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/21/5658/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:21:p:5658-:d:436696
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().