Energy and Exergy Analysis of Low-Global Warming Potential Refrigerants as Replacement for R410A in Two-Speed Heat Pumps for Cold Climates
Bo Shen and
Moonis R. Ally
Additional contact information
Bo Shen: Oak Ridge National Laboratory, Energy and Transportation Sciences Division, Oak Ridge, TN 37830, USA
Moonis R. Ally: Oak Ridge National Laboratory, Energy and Transportation Sciences Division, Oak Ridge, TN 37830, USA
Energies, 2020, vol. 13, issue 21, 1-18
Abstract:
Heat pumps (HPs) are being developed with a new emphasis on cold climates. To lower the environmental impact of greenhouse gas (GHG) emissions, alternate low global warming potential (GWP) refrigerants must also replace the exclusive use of the refrigerant R410A, preferably without re-engineering the mechanical hardware. In this paper, we analyze the performance of four low-GWP alternative refrigerants (R32, R452B, R454B, and R466A) relative to the conventional R410A and draw conclusions on the relative performances for providing heating in cold climates based on the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) 210/240 standard for two-speed heat pumps. The simulations are carried using the Department of Energy, Oak Ridge National Laboratory (DOE/ORNL) Heat Pump Design Model (HPDM), a well-known heating, ventilation, and air conditioning (HVAC) modeling and design tool in the public domain and the HVAC research and development community. The results of the simulation are further scrutinized using exergy analysis to identify sources of systemic inefficiency, the root cause of lost work. This rigorous approach provides an exhaustive analysis of alternate low-GWP refrigerants to replace R410A using available compressors and system components, without compromising performance.
Keywords: low-GWP refrigerants; modeling; heat pumps; simulation; exergy; cold climate (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/21/5666/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/21/5666/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:21:p:5666-:d:436946
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().