EconPapers    
Economics at your fingertips  
 

On the Turbulence-Chemistry Interaction of an HCCI Combustion Engine

Marco D’Amato, Annarita Viggiano and Vinicio Magi
Additional contact information
Marco D’Amato: School of Engineering, University of Basilicata, 85100 Potenza, Italy
Annarita Viggiano: School of Engineering, University of Basilicata, 85100 Potenza, Italy
Vinicio Magi: School of Engineering, University of Basilicata, 85100 Potenza, Italy

Energies, 2020, vol. 13, issue 22, 1-23

Abstract: A numerical study was carried out to evaluate the influence of engine combustion chamber geometry and operating conditions on the performance and emissions of a homogeneous charge compression ignition (HCCI) engine. Combustion in an HCCI engine is a very complex phenomenon that is influenced by several factors that need to be controlled, such as gas temperature, heat transfer, turbulence and auto-ignition of the gas mixture. An eddy dissipation concept (EDC) combustion model was used to take into account the interaction between turbulence and chemistry. The model assumed that reactions occur in small turbulent structures called fine-scales, whose characteristic lengths and times depend mainly on the turbulence level. The model parameters were slightly modified with respect to the standard model proposed by Magnussen, to correctly simulate the characteristics of the HCCI combustion process. A reduced iso-octane chemical mechanism with 186 species and 914 chemical reactions was employed together with a sub-mechanism for NOx. The model was validated by comparing the results with available experimental data in terms of pressure and instantaneous heat release rate. Two engine chamber geometries with and without a cavity in the piston were considered, respectively. The two engines provided significant differences in terms of fluid-dynamic patterns and turbulence intensity levels in the combustion chamber. The results show that combustion started earlier and proceeded faster for the flat piston, leading to an increase in both the peak pressure and gross indicated mean effective pressure, as well as a reduction of CO and UHC emissions. An additional analysis was performed by considering a case without swirl for the flat-piston case. Such an analysis shows that the swirl motion reduces the time duration of combustion and slightly increases the gross indicated work per cycle.

Keywords: homogeneous charge compression ignition (HCCI); eddy dissipation concept (EDC); computational fluid-dynamics (CFD); turbulent combustion (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/22/5876/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/22/5876/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:22:p:5876-:d:443033

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5876-:d:443033