Conjugated Numerical Approach for Modelling DBHE in High Geothermal Gradient Environments
Theo Renaud,
Patrick G. Verdin and
Gioia Falcone
Additional contact information
Theo Renaud: Energy and Power, Cranfield University, Cranfield MK43 0AL, UK
Patrick G. Verdin: Energy and Power, Cranfield University, Cranfield MK43 0AL, UK
Gioia Falcone: James Watt School of Engineering, University of Glasgow, Glasgow G13 8QQ, UK
Energies, 2020, vol. 13, issue 22, 1-18
Abstract:
Geothermal is a renewable energy source that can be untapped through various subsurface technologies. Closed geothermal well solutions, such as deep geothermal heat exchangers (DBHEs), consist of circulating a working fluid to recover the available heat, with less dependency on the local geological settings than conventional geothermal systems. This paper emphasizes a double numerical method to strengthen the assessment of DBHE performances. A computational fluid dynamics (CFD) commercial software and the 1D coupled wellbore-reservoir geothermal simulator T2Well have been used to investigate the heat transfer and fluid flow in a vertical DBHE in high geothermal gradient environments. The use of constant water properties to investigate the energy produced from DBHEs can lead to underestimating the overall heat transfer at high temperature and low mass flow rate. 2D axisymmetric CFD modelling improves the understanding of the return flow at the bottom of the DBHE, readjusting and better estimating the pressures losses commonly obtained with 1D modelling. This paper highlights the existence of convective cells located at the bottom of the DBHE internal tubing, with no significant effects due to the increase of injected water flow. Both codes are shown to constrain the numerical limitations to access the true potential of geothermal heat extraction from DBHEs in high geothermal gradient environments and demonstrate that they can be used for geothermal energy engineering applications.
Keywords: deep wellbore heat exchanger; modeling; geothermal energy CFD (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/22/6107/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/22/6107/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:22:p:6107-:d:448957
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().