EconPapers    
Economics at your fingertips  
 

Combined Optimal Torque Feedforward and Modal Current Feedback Control for Low Inductance PM Motors

Roland Kasper and Dmytro Golovakha
Additional contact information
Roland Kasper: Chair of Mechatronics, Otto von Guericke University, 39106 Magdeburg, Germany
Dmytro Golovakha: Chair of Mechatronics, Otto von Guericke University, 39106 Magdeburg, Germany

Energies, 2020, vol. 13, issue 23, 1-16

Abstract: Small sized electric motors providing high specific torque and power are required for many mobile applications. Air gap windings technology allows to create innovative lightweight and high-power electric motors that show low phase inductances. Low inductance leads to a small motor time constant, which enables fast current and torque control, but requires a high switching frequency and short sampling time to keep current ripples and losses in an acceptable range. This paper proposes an optimal torque feedforward control method, minimizing either torque ripples or motor losses, combined with a very robust and computation-efficient modal current feedback control. Compared to well-known control methods based on the Clarke-Park Transformations, the proposed strategy reduces torque ripples and motor losses significantly and offers a very fast implementation on standard microcontrollers with high robustness, e.g., against measurement errors of rotor angle. To verify the accuracy of the proposed control method, an experimental setup was used including a wheel hub motor built with a slotless air gap winding of low inductance, a standard microcontroller and GaN (Gallium Nitride) Power Devices allowing for high PWM switching frequencies. The proposed control method was validated first by correlation of simulation and experimental results and second by comparison to conventional field-oriented control.

Keywords: optimal control; modal current control; feedforward torque control; feedback current control; torque ripples and loss minimization; low inductance permanent magnet motor (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/23/6184/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/23/6184/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:23:p:6184-:d:450556

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6184-:d:450556