EconPapers    
Economics at your fingertips  
 

Prediction of Cooling Energy Consumption in Hotel Building Using Machine Learning Techniques

Marek Borowski and Klaudia Zwolińska
Additional contact information
Marek Borowski: Faculty of Mining and Geoengineering, AGH University of Science and Technology, 30-059 Kraków, Poland
Klaudia Zwolińska: Faculty of Mining and Geoengineering, AGH University of Science and Technology, 30-059 Kraków, Poland

Energies, 2020, vol. 13, issue 23, 1-19

Abstract: The diversification of energy sources in buildings and the interdependence as well as communication between HVAC installations in the building have resulted in the growing interest in energy load prediction systems that enable proper management of energy resources. In addition, energy storage and the creation of energy buffers are also important in terms of proper resource management, for which it is necessary to correctly determine energy consumption over time. It is obvious that the consumption of cooling energy depends on meteorological conditions. Knowing the parameters of the outside air and the number of users, it is, therefore, possible to determine the hourly energy consumption of a cooling system in a building with some accuracy. The article presents models of cooling energy prediction in summer for a hotel building in southern Poland. The paper presents two methods that are often used for energy prediction: neural networks and support vector machines. Meteorological data, time data, and occupancy level were used as input parameters. Based on the collected input and output data, various configurations were tested to identify the model with the best accuracy. As the analysis showed, higher prediction accuracy was obtained thanks to the use of neural networks. The best of the proposed models was characterized by the WAPE and CV coefficients of 19.93% and 27.03%, respectively.

Keywords: energy consumption; heating and cooling system; optimization and management; energy use prediction; neural network; support vector machine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/23/6226/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/23/6226/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:23:p:6226-:d:451555

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6226-:d:451555