EconPapers    
Economics at your fingertips  
 

Fluid Mixing Nonequilibrium Processes in Industrial Piping Flows

Mikhail Sukharev
Additional contact information
Mikhail Sukharev: Department of Applied Mathematics and Computer Modeling, National University of Oil and Gas «Gubkin University», 119991 Moscow, Russia

Energies, 2020, vol. 13, issue 23, 1-18

Abstract: The flow of a multicomponent fluid through a pipeline system of arbitrary configuration is considered. The problem consists in determining the component composition of the fluid for each pipeline of the system based on the values of the concentration of the components throughout the entire set of measuring points, provided that there are no phase transitions. To solve the problem, mathematical models have been developed that, in principle, are suitable for pipeline systems of various functional purposes, the presentation is concretized and carried out in relation to gas transmission systems. The models are stochastic in nature due to measurement errors, which are considered random variables. The solution of the problem is reduced to the optimization of a quadratic function with constraints in the form of equalities and inequalities. The considered mixing processes do not depend on the regime parameters of the fluid flow. The processes are irreversible and non-equilibrium. A criterion is introduced that characterizes the degree of closeness of a multicomponent mixture to an equilibrium state. The criterion is analogous to entropy in thermodynamic processes. A numerical example of calculating the distribution of a three-component mixture is given. The example illustrates the feasibility of the proposed computational procedures and gives an idea of the distribution of the component composition and the change in «entropy» along the directions of pumping of the gas supply system.

Keywords: multi-component flows; gas transmission systems; non-equilibrium processes; mathematical models; maximum likelihood method; calorific value; entropy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/23/6364/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/23/6364/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:23:p:6364-:d:454928

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6364-:d:454928