EconPapers    
Economics at your fingertips  
 

Equation Based New Methods for Residential Load Forecasting

S. M. Mahfuz Alam and Mohd. Hasan Ali
Additional contact information
S. M. Mahfuz Alam: Department of EECE, The University of Memphis, Memphis, TN 38152, USA
Mohd. Hasan Ali: Department of EECE, The University of Memphis, Memphis, TN 38152, USA

Energies, 2020, vol. 13, issue 23, 1-22

Abstract: This work proposes two non-linear and one linear equation-based system for residential load forecasting considering heating degree days, cooling degree days, occupancy, and day type, which are applicable to any residential building with small sets of smart meter data. The coefficients of the proposed nonlinear and linear equations are tuned by particle swarm optimization (PSO) and the multiple linear regression method, respectively. For the purpose of comparison, a subtractive clustering based adaptive neuro fuzzy inference system (ANFIS), random forests, gradient boosting trees, and long-term short memory neural network, conventional and modified support vector regression methods were considered. Simulations have been performed in MATLAB environment, and all the methods were tested with randomly chosen 30 days data of a residential building in Memphis City for energy consumption prediction. The absolute average error, root mean square error, and mean average percentage errors are tabulated and considered as performance indices. The efficacy of the proposed systems for residential load forecasting over the other systems have been validated by both simulation results and performance indices, which indicate that the proposed equation-based systems have the lowest absolute average errors, root mean square errors, and mean average percentage errors compared to the other methods. In addition, the proposed systems can be easily practically implemented.

Keywords: adaptive neuro fuzzy inference system (ANFIS); random forest (RF); gradient boosting trees; long term short memory (LSTM); equation-based prediction system; load forecasting; smart buildings (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/23/6378/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/23/6378/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:23:p:6378-:d:455220

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6378-:d:455220