EconPapers    
Economics at your fingertips  
 

Novel Mode Adaptive Artificial Neural Network for Dynamic Learning: Application in Renewable Energy Sources Power Generation Prediction

Muhammad Ahsan Zamee and Dongjun Won
Additional contact information
Muhammad Ahsan Zamee: Department of Electrical and Computer Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea
Dongjun Won: Department of Electrical and Computer Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea

Energies, 2020, vol. 13, issue 23, 1-29

Abstract: A reasonable dataset, which is an essential factor of renewable energy forecasting model development, sometimes is not directly available. Waiting for a substantial amount of training data creates a delay for a model to participate in the electricity market. Also, inappropriate selection of dataset size may lead to inaccurate modeling. Besides, in a multivariate environment, the impact of different variables on the output is often neglected or not adequately addressed. Therefore, in this work, a novel Mode Adaptive Artificial Neural Network (MAANN) algorithm has been proposed using Spearman’s rank-order correlation, Artificial Neural Network (ANN), and population-based algorithms for the dynamic learning of renewable energy sources power generation forecasting model. The proposed algorithm has been trained and compared with three population-based algorithms: Advanced Particle Swarm Optimization (APSO), Jaya Algorithm, and Fine-Tuning Metaheuristic Algorithm (FTMA). Also, the gradient descent algorithm is considered as a base case for comparing with the population-based algorithms. The proposed algorithm has been applied in predicting the power output of a Solar Photovoltaic (PV) and Wind Turbine Energy System (WTES). Using the proposed methodology with FTMA, the error was reduced by 71.261% and 80.514% compared to the conventional fixed-sized dataset gradient descent-based training approach for Solar PV and WTES, respectively.

Keywords: dynamic learning; advanced particle swarm optimization; jaya algorithm; fine-tuning metaheuristic algorithm; renewable energy power forecasting; spearman’s rank-order correlation; artificial neural network (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/23/6405/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/23/6405/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:23:p:6405-:d:456021

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6405-:d:456021