Novel Mode Adaptive Artificial Neural Network for Dynamic Learning: Application in Renewable Energy Sources Power Generation Prediction
Muhammad Ahsan Zamee and
Dongjun Won
Additional contact information
Muhammad Ahsan Zamee: Department of Electrical and Computer Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea
Dongjun Won: Department of Electrical and Computer Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea
Energies, 2020, vol. 13, issue 23, 1-29
Abstract:
A reasonable dataset, which is an essential factor of renewable energy forecasting model development, sometimes is not directly available. Waiting for a substantial amount of training data creates a delay for a model to participate in the electricity market. Also, inappropriate selection of dataset size may lead to inaccurate modeling. Besides, in a multivariate environment, the impact of different variables on the output is often neglected or not adequately addressed. Therefore, in this work, a novel Mode Adaptive Artificial Neural Network (MAANN) algorithm has been proposed using Spearman’s rank-order correlation, Artificial Neural Network (ANN), and population-based algorithms for the dynamic learning of renewable energy sources power generation forecasting model. The proposed algorithm has been trained and compared with three population-based algorithms: Advanced Particle Swarm Optimization (APSO), Jaya Algorithm, and Fine-Tuning Metaheuristic Algorithm (FTMA). Also, the gradient descent algorithm is considered as a base case for comparing with the population-based algorithms. The proposed algorithm has been applied in predicting the power output of a Solar Photovoltaic (PV) and Wind Turbine Energy System (WTES). Using the proposed methodology with FTMA, the error was reduced by 71.261% and 80.514% compared to the conventional fixed-sized dataset gradient descent-based training approach for Solar PV and WTES, respectively.
Keywords: dynamic learning; advanced particle swarm optimization; jaya algorithm; fine-tuning metaheuristic algorithm; renewable energy power forecasting; spearman’s rank-order correlation; artificial neural network (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/23/6405/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/23/6405/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:23:p:6405-:d:456021
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().