Chemistry of Reservoir Fluids in the Aspect of CO 2 Injection for Selected Oil Reservoirs in Poland
Ewa Knapik and
Katarzyna Chruszcz-Lipska
Additional contact information
Ewa Knapik: Drilling, Oil and Gas Faculty, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Katarzyna Chruszcz-Lipska: Drilling, Oil and Gas Faculty, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Energies, 2020, vol. 13, issue 23, 1-19
Abstract:
Worldwide experiences related to geological CO 2 storage show that the process of the injection of carbon dioxide into depleted oil reservoirs (CCS-EOR, Carbon Capture and Storage—Enhanced Oil Recovery) is highly profitable. The injection of CO 2 will allow an increasing recovery factor (thus increasing CCS process profitability) and revitalize mature reservoirs, which may lead to oil spills due to pressure buildups. In Poland, such a solution has not yet been implemented in the industry. This work provides additional data for analysis of the possibility of the CCS-EOR method’s implementation for three potential clusters of Polish oil reservoirs located at a short distance one from another. The aim of the work was to examine the properties of reservoir fluids for these selected oil reservoirs in order to assure a better understanding of the physicochemical phenomena that accompany the gas injection process. The chemical composition of oils was determined by gas chromatography. All tested oils represent a medium black oil type with the density ranging from 795 to 843 g/L and the viscosity at 313 K, varying from 1.95 to 5.04 mm/s. The content of heavier components C25+ is up to 17 wt. %. CO 2 –oil MMP (Minimum Miscibility Pressure) was calculated in a CHEMCAD simulator using the Soave–Redlich–Kwong equation of state (SRK EoS). The oil composition was defined as a mixture of n-alkanes. Relatively low MMP values ( ca . 8.3 MPa for all tested oils at 313 K) indicate a high potential of the EOR method, and make this geological CO 2 storage form more attractive to the industry. For reservoir brines, the content of the main ions was experimentally measured and CO 2 solubility under reservoir conditions was calculated. The reservoir brines showed a significant variation in properties with total dissolved solids contents varying from 17.5 to 378 g/L. CO 2 solubility in brines depends on reservoir conditions and brine chemistry. The highest calculated CO 2 solubility is 1.79 mol/kg, which suggest possible CO 2 storage in aquifers.
Keywords: CO 2 injection; EOR; MMP (Minimum Miscibility Pressure) calculation; CHEMCAD (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/23/6456/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/23/6456/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:23:p:6456-:d:457768
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().