A Parametric Study of a Hybrid Photovoltaic Thermal (PVT) System Coupled with a Domestic Hot Water (DHW) Storage Tank
Madalina Barbu,
George Darie and
Monica Siroux
Additional contact information
Madalina Barbu: Faculty of Power Engineering, University Politehnica of Bucharest, 60042 Bucharest, Romania
George Darie: Faculty of Power Engineering, University Politehnica of Bucharest, 60042 Bucharest, Romania
Monica Siroux: INSA Strasbourg ICUBE, University of Strasbourg, 67200 Strasbourg, France
Energies, 2020, vol. 13, issue 24, 1-18
Abstract:
Photovoltaic-thermal panels are hybrid systems that combine the two types of conventional solar energy technologies (photovoltaic and thermal panels) and simultaneously generate both thermal and electrical energy in a micro-cogeneration system. Like any co-generation system, there is an optimal balance that can be achieved between the thermal and electrical energy produced. For this reason, it is important to establish the relationship and inter-connection between the two. Limited research is available on the cogeneration interaction in a PVT system, so the novelty of this article lies in the consideration of the entire energy system connected to the PVT panel, including the storage tank and the consumer demand curve, and the investigation of the thermal parametric variation. This study analyses the impact of the variation of some thermal parameters of a domestic hot water tank on the electrical efficiency of a photovoltaic-thermal panel. A model of a system of photovoltaic-thermal panels is built in a transient systems simulation program (TRNSYS) and a one-factor-at-a-time analysis is carried out for the cold-water main temperature, tank size, tank outlet flow and consumer demand curve. The results show that the variation of the outlet flow to the consumer has the highest impact on the electrical efficiency, of about 6.8%. The next highest impact factor is the size of the tank with a variation of 4.7%. Matching the profile of the consumer is also an important aspect. It was observed that the peak electrical efficiency occurs during peak consumer demand. Finally, the instantaneous variation of the thermal and electrical power of the system was analysed as a function of the temperature at the inlet of the photovoltaic-thermal panel.
Keywords: PVT; micro-cogeneration; parametric analysis; TRNSYS; thermal storage tank (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/24/6481/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/24/6481/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:24:p:6481-:d:458616
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().