Controlling the Thermal Power of a Wall Heating Panel with Heat Pipes by Changing the Mass Flowrate and Temperature of Supplying Water—Experimental Investigations
Łukasz Amanowicz
Additional contact information
Łukasz Amanowicz: Institute of Environmental Engineering and Building Services, Poznan University of Technology, 60-965 Poznan, Poland
Energies, 2020, vol. 13, issue 24, 1-18
Abstract:
Renewable energy sources for the purpose of heating buildings cooperate perfectly with so-called low-temperature heating systems. Water loop surface heating systems had been thoroughly tested. In contrast, thermal performance of wall panels with heat pipes have not been fully recognized, yet. The determination of the thermal power as well as the control of panels thermal performance cannot be performed with the methods developed for water loop systems. In this paper, the novel heating panels with heat pipes were tested to analyze the possibility of controlling their performance by changing the mass flowrate of heating water and its temperature. Specific heating power of the investigated panels varies from 16.9 W/m 2 to 93.8 W/m 2 when supplying a water temperature ranging from 35 °C to 65 °C and mass flowrate from 10 g/s to 47.5 g/s. Investigations revealed that the thermal performance of the panels is more sensitive to the changes of temperature than to the changes of mass flowrate of supplying water, and thus, should be controlled by changing the supply water temperature at low mass flowrates to obtain a low energy usage of pumps (diminished pressure losses) and good quality of controlling.
Keywords: wall-type heating system; heat pipes; thermal characteristics; thermal performance control; low-temperature heating; surface heating; radiant heating; low energy buildings; nearly zero energy building (nZEB) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/24/6547/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/24/6547/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:24:p:6547-:d:460603
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().