EconPapers    
Economics at your fingertips  
 

Molecular-Scale Considerations of Enhanced Oil Recovery in Shale

Mohamed Mehana, Qinjun Kang and Hari Viswanathan
Additional contact information
Mohamed Mehana: Los Alamos National Lab, Computational Earth Science Group, Earth and Environmental Science Division, Los Alamos, NM 87545, USA
Qinjun Kang: Los Alamos National Lab, Computational Earth Science Group, Earth and Environmental Science Division, Los Alamos, NM 87545, USA
Hari Viswanathan: Los Alamos National Lab, Computational Earth Science Group, Earth and Environmental Science Division, Los Alamos, NM 87545, USA

Energies, 2020, vol. 13, issue 24, 1-13

Abstract: With only less than 10% recovery, the primary production of hydrocarbon from shale reservoirs has redefined the energy equation in the world. Similar to conventional reservoirs, Enhanced Oil Recovery (EOR) techniques could be devised to enhance the current recovery factors. However, shale reservoirs possess unique characteristics that significantly affect the fluid properties. Therefore, we are adopting a molecular simulation approach that is well-suited to account for these effects to evaluate the performance of three different gases, methane, carbon dioxide and nitrogen, to recover the hydrocarbons from rough pore surfaces. Our hydrocarbon systems consists of either a single component (decane) or more than one component (decane and pentane). We simulated cases where concurrent and countercurrent displacement is studied. For concurrent displacement (injected fluids displace hydrocarbons towards the production region), we found that nitrogen and methane yielded similar recovery; however nitrogen exhibited a faster breakthrough. On the other hand, carbon dioxide was more effective in extracting the hydrocarbons when sufficient pressure was maintained. For countercurrent displacement (gases are injected and hydrocarbons are produced from the same direction), methane was found to be more effective, followed by carbon dioxide and nitrogen. In all cases, confinement reduced the recovery factor of all gases. This work provides insights to devise strategies to improve the current recovery factors observed in shale reservoirs.

Keywords: molecular simulation; enhanced oil recovery; methane; shale (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/24/6619/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/24/6619/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:24:p:6619-:d:462526

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6619-:d:462526