Investigation of the Impact Factors on the Optimal Intermediate Temperature in a Dual Transcritical CO 2 System with a Dedicated Transcritical CO 2 Subcooler
Yulong Song,
Haidan Wang and
Feng Cao
Additional contact information
Yulong Song: School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Haidan Wang: School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Feng Cao: School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Energies, 2020, vol. 13, issue 2, 1-23
Abstract:
As a natural fluid with superior environment advantages, CO 2 is used to constitute a dual transcritical system to reduce performance deterioration under high gas-cooler outlet temperature. Aiming at the system configuration, improvement potential, and optimization, the proposed system is deeply analyzed, and corresponding coupling models are presented in detail. First, the veracity of simulation models is completely verified by comparing with previous measurements. Then, the existence of the optimal intermediate temperature is validated, while the optimal values are found to increase with the augmentation in ambient and water-feed temperatures. Moreover, the negative effects of the pinch point on the heat transfer inside the gas cooler could be greatly reduced by using the dual gas cooler. Finally, a predictive correlation for optimal intermediate temperature determination with ambient and water-feed temperature as independent variables is proposed, which provides a theoretical basis for the proposed system to realize efficient control in the industrialization process.
Keywords: dual transcritical CO 2 system; subcooling; optimal intermediate temperature; predictive correlation; heat pump (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/2/309/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/2/309/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:2:p:309-:d:306472
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().