EconPapers    
Economics at your fingertips  
 

Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting

Salah Bouktif, Ali Fiaz, Ali Ouni and Mohamed Adel Serhani
Additional contact information
Salah Bouktif: Department of Computer Science and Software Engineering, UAE University, Al Ain 64141, UAE
Ali Fiaz: Department of Computer Science and Software Engineering, UAE University, Al Ain 64141, UAE
Ali Ouni: Department of Software Engineering and IT, Ecole de Technologie Superieure, Montréal, QC H3C 1K3, Canada
Mohamed Adel Serhani: Department of Information Systems and Security, UAE University, Al Ain 64141, UAE

Energies, 2020, vol. 13, issue 2, 1-21

Abstract: Short term electric load forecasting plays a crucial role for utility companies, as it allows for the efficient operation and management of power grid networks, optimal balancing between production and demand, as well as reduced production costs. As the volume and variety of energy data provided by building automation systems, smart meters, and other sources are continuously increasing, long short-term memory (LSTM) deep learning models have become an attractive approach for energy load forecasting. These models are characterized by their capabilities of learning long-term dependencies in collected electric data, which lead to accurate prediction results that outperform several alternative statistical and machine learning approaches. Unfortunately, applying LSTM models may not produce acceptable forecasting results, not only because of the noisy electric data but also due to the naive selection of its hyperparameter values. Therefore, an optimal configuration of an LSTM model is necessary to describe the electric consumption patterns and discover the time-series dynamics in the energy domain. Finding such an optimal configuration is, on the one hand, a combinatorial problem where selection is done from a very large space of choices; on the other hand, it is a learning problem where the hyperparameters should reflect the energy consumption domain knowledge, such as the influential time lags, seasonality, periodicity, and other temporal attributes. To handle this problem, we use in this paper metaheuristic-search-based algorithms, known by their ability to alleviate search complexity as well as their capacity to learn from the domain where they are applied, to find optimal or near-optimal values for the set of tunable LSTM hyperparameters in the electrical energy consumption domain. We tailor both a genetic algorithm (GA) and particle swarm optimization (PSO) to learn hyperparameters for load forecasting in the context of energy consumption of big data. The statistical analysis of the obtained result shows that the multi-sequence deep learning model tuned by the metaheuristic search algorithms provides more accurate results than the benchmark machine learning models and the LSTM model whose inputs and hyperparameters were established through limited experience and a discounted number of experimentations.

Keywords: long short-term memory (LSTM); genetic algorithm (GA); particle swarm optimization (PSO); time series; energy forecasting (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/2/391/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/2/391/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:2:p:391-:d:308290

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:391-:d:308290