Wireless Power Hanger Pad for Portable Wireless Audio Device Power Charger Application
Win-Jet Luo,
C. Bambang Dwi Kuncoro and
Yean- Der Kuan
Additional contact information
Win-Jet Luo: Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, Taichung 41170, Taiwan
C. Bambang Dwi Kuncoro: Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, Taichung 41170, Taiwan
Yean- Der Kuan: Department of Refrigeration, Air Conditioning and Energy Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan
Energies, 2020, vol. 13, issue 2, 1-18
Abstract:
Since the portability feature has been introduced in headphone development, this device now uses a battery as the main built-in power. However, the battery has limited power capacity and a short lifetime. Battery substitution and a conventional battery charger method is an ineffective, inflexible inconvenience for enhancing the user experience. This paper presents an innovative portable audio device battery built-in charger method based on wireless power technology. The developed charging device is composed of a headphone hanger pad for the wireless headphone and a charging pad for the portable wireless audio device battery charging. Circular flat spiral air-core coil was designed and evaluated using a numerical method to obtain optimal vertical magnetic field distribution based on the proposed evaluation criteria. A coil has inner coil diameter of 25 mm, outer coil diameter of 47.8 mm, wire diameter of 0.643 mm, the pitch of 0.03 mm and a number of turns of 17 was chosen to be implemented on the transmitter coil. A magnetic induction technique was adopted in the proposed wireless power transmission module which was implemented using commercial off-the-shelf components. For experimental and validation purposes, a developed receiver module applied to the commercial wireless headphone and portable audio speaker have a built-in battery capacity at 3.7 V 300 mAh. The experimental results show that the wireless power hanger pad prototype can transfer a 5 V induction voltage at a maximum current of 1000 mA, and the power transfer efficiency is around 70%. It works at 110 kHz of operation frequency with a maximum transmission distance of about 10 mm and takes 1 h to charge fully one 3.7 V 300 mAh polymer lithium battery.
Keywords: wireless power; headphone stand; magnetic field; audio device; portable (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/2/419/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/2/419/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:2:p:419-:d:308907
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().