EconPapers    
Economics at your fingertips  
 

A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm

Jun Hao, Xiaolei Sun and Qianqian Feng
Additional contact information
Jun Hao: Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
Xiaolei Sun: Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
Qianqian Feng: Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China

Energies, 2020, vol. 13, issue 3, 1-25

Abstract: Accurate forecasting of the energy demand is crucial for the rational formulation of energy policies for energy management. In this paper, a novel ensemble forecasting model based on the artificial bee colony (ABC) algorithm for the energy demand was proposed and adopted. The ensemble model forecasts were based on multiple time variables, such as the gross domestic product (GDP), industrial structure, energy structure, technological innovation, urbanization rate, population, consumer price index, and past energy demand. The model was trained and tested using the primary energy demand data collected in China. Seven base models, including the regression-based model and machine learning models, were utilized and compared to verify the superior performance of the ensemble forecasting model proposed herein. The results revealed that (1) the proposed ensemble model is significantly superior to the benchmark prediction models and the simple average ensemble prediction model just in terms of the forecasting accuracy and hypothesis test, (2) the proposed ensemble approach with the ABC algorithm can be employed as a promising framework for energy demand forecasting in terms of the forecasting accuracy and hypothesis test, and (3) the forecasting results obtained for the future energy demand by the ensemble model revealed that the future energy demand of China will maintain a steady growth trend.

Keywords: energy demand; ensemble framework; forecasting; machine learning; artificial bee colony algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/3/550/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/3/550/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:3:p:550-:d:312344

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:550-:d:312344