EconPapers    
Economics at your fingertips  
 

Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model

Zihao Li, Daniel Friedrich and Gareth P. Harrison
Additional contact information
Zihao Li: School of Engineering, the University of Edinburgh, Edinburgh EH9 3FB, UK
Daniel Friedrich: School of Engineering, the University of Edinburgh, Edinburgh EH9 3FB, UK
Gareth P. Harrison: School of Engineering, the University of Edinburgh, Edinburgh EH9 3FB, UK

Energies, 2020, vol. 13, issue 4, 1-20

Abstract: There is great interest in data-driven modelling for the forecasting of building energy consumption while using machine learning (ML) modelling. However, little research considers classification-based ML models. This paper compares the regression and classification ML models for daily electricity and thermal load modelling in a large, mixed-use, university building. The independent feature variables of the model include outdoor temperature, historical energy consumption data sets, and several types of ‘agent schedules’ that provide proxy information that is based on broad classes of activity undertaken by the building’s inhabitants. The case study compares four different ML models testing three different feature sets with a genetic algorithm (GA) used to optimize the feature sets for those ML models without an embedded feature selection process. The results show that the regression models perform significantly better than classification models for the prediction of electricity demand and slightly better for the prediction of heat demand. The GA feature selection improves the performance of all models and demonstrates that historical heat demand, temperature, and the ‘agent schedules’, which derive from large occupancy fluctuations in the building, are the main factors influencing the heat demand prediction. For electricity demand prediction, feature selection picks almost all ‘agent schedule’ features that are available and the historical electricity demand. Historical heat demand is not picked as a feature for electricity demand prediction by the GA feature selection and vice versa. However, the exclusion of historical heat/electricity demand from the selected features significantly reduces the performance of the demand prediction.

Keywords: data driven; buildings; thermal demand; electricity demand; demand prediction (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/4/780/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/4/780/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:4:p:780-:d:319133

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:780-:d:319133