Limitations and Characterization of Energy Storage Devices for Harvesting Applications
Roberto de Fazio,
Donato Cafagna,
Giorgio Marcuccio and
Paolo Visconti
Additional contact information
Roberto de Fazio: Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
Donato Cafagna: Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
Giorgio Marcuccio: Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
Paolo Visconti: Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
Energies, 2020, vol. 13, issue 4, 1-18
Abstract:
This paper aims to study the limitations and performances of the main energy storage devices commonly used in energy harvesting applications, namely super-capacitors (SC) and lithium polymer (LiPo) batteries. The self-discharge phenomenon is the main limitation to the employment of SCs to store energy for a long time, thus reducing efficiency and autonomy of the energy harvesting system. Therefore, the analysis of self-discharge trends was carried out for three different models of commercial SCs, describing the phenomenon in terms of self-discharge rate and internal resistance. In addition, physical interpretations concerning the self-discharge mechanism based on the experimental data are provided, thus explaining the two super-imposed phenomena featured by distinct time constants. Afterwards, the dependence of self-discharge phenomenon from the charging time duration (namely, SCs charged at 5 V and then kept under charge for one or five hours) was analyzed; by comparing the voltage drop during the self-discharge process, a self-discharge reduction for longer charging durations was obtained and the physical interpretation provided (at best −6.8% after 24 h and −13.4% after 120 h). Finally, self-discharge trends of two commercial 380 mAh LiPo batteries (model LW 752035) were acquired and analyzed; the obtained results show an open circuit voltage reduction of only 0.59% in the first 24 h and just 1.43% after 124 h.
Keywords: energy harvesting; storage devices; super-capacitors; LiPo batteries; self-discharge (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/4/783/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/4/783/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:4:p:783-:d:319369
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().