Experimental Study on the Mechanical Properties of Biomass Briquettes from a Mixture of Rice Husk and Pine Sawdust
Andrés Niño,
Nelson Arzola and
Oscar Araque
Additional contact information
Andrés Niño: Departamento de Ingeniería Mecánica y Mecatrónica, Universidad Nacional de Colombia, Bogotá 111321, Colombia
Nelson Arzola: Departamento de Ingeniería Mecánica y Mecatrónica, Universidad Nacional de Colombia, Bogotá 111321, Colombia
Oscar Araque: Departamento de Ingeniería Mecánica, Universidad de Ibagué, Ibagué 730001, Colombia
Energies, 2020, vol. 13, issue 5, 1-19
Abstract:
In search of guaranteeing global energy requirements, waste from different agricultural, forestry and industrial sources is presented as a renewable and sustainable energy source. The manufacture of solid fuels from biomass based on the densification of this to improve its mechanical and energy properties is one of the mechanisms of viable energy production from the technical-economic point of view. The biomass mixture is one of the topics currently researched, in which various factors can affect the final behavior of the briquettes. In this research the influence on the mechanical properties of briquettes obtained from the mixture between two biomasses is studied: rice husk and pine sawdust. A mixed factorial experimental factorial design is used, in which the process temperature, the proportion of the rice husk biomass over the total mass, and the compaction time are defined as experimental factors. Experimental statistical models are obtained that partially explain the behavior of several responses that characterize the mechanical properties of the briquettes based on the selected independent parameters. It was found that the mechanical durability of the briquettes is higher than 97.5%, meets the existing standards, like German Institute for Standardization (DIN) 51731, Theological Institute Batista Ebenézer (ITEBE) SS187120 or International Organization for Standardization (ISO) 17225-2, for a compaction temperature of 110 °C and a proportion of rice husk that does not exceed 60% of the total biomass mixture in the briquette. The compaction time was also statistically significant to achieve a briquettes density and an appropriate elasticity modulus in the briquettes. The results of this research are of interest and can serve as a starting point for the design of the industrial process of densification of these two mixed biomasses.
Keywords: pine sawdust; briquettes; biomass; rice husk; densification; mechanical properties (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/5/1060/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/5/1060/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:5:p:1060-:d:326093
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().