Synthesis Gas Composition Prediction for Underground Coal Gasification Using a Thermochemical Equilibrium Modeling Approach
Christopher Otto and
Thomas Kempka
Additional contact information
Christopher Otto: GFZ German Research Centre for Geosciences, Fluid Systems Modelling, Telegrafenberg, 14473 Potsdam, Germany
Thomas Kempka: GFZ German Research Centre for Geosciences, Fluid Systems Modelling, Telegrafenberg, 14473 Potsdam, Germany
Energies, 2020, vol. 13, issue 5, 1-17
Abstract:
Underground coal gasification (UCG) is an in situ conversion technique that enables the production of high-calorific synthesis gas from resources that are economically not minable by conventional methods. A broad range of end-use options is available for the synthesis gas, including fuels and chemical feedstock production. Furthermore, UCG also offers a high potential for integration with Carbon Capture and Storage (CCS) to mitigate greenhouse gas emissions. In the present study, a stoichiometric equilibrium model, based on minimization of the Gibbs function has been used to estimate the equilibrium composition of the synthesis gas. Thereto, we further developed and applied a proven thermodynamic equilibrium model to simulate the relevant thermochemical coal conversion processes (pyrolysis and gasification). Our modeling approach has been validated against thermodynamic models, laboratory gasification experiments and UCG field trial data reported in the literature. The synthesis gas compositions have been found to be in good agreement under a wide range of different operating conditions. Consequently, the presented modeling approach enables an efficient quantification of synthesis gas quality resulting from UCG, considering varying coal and oxidizer compositions at deposit-specific pressures and temperatures.
Keywords: underground coal gasification; Cantera; thermodynamic equilibrium composition; synthesis gas; oxidizer (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/5/1171/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/5/1171/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:5:p:1171-:d:328301
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().