EconPapers    
Economics at your fingertips  
 

Management and Activation of Energy Flexibility at Building and Market Level: A Residential Case Study

Paolo Taddeo, Alba Colet, Rafael E. Carrillo, Lluc Casals Canals, Baptiste Schubnel, Yves Stauffer, Ivan Bellanco, Cristina Corchero Garcia and Jaume Salom
Additional contact information
Paolo Taddeo: Thermal Energy and Building Performance Group, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià de Besòs (Barcelona) 08930, Spain
Alba Colet: Energy Systems Analytics Group, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià de Besòs (Barcelona) 08930, Spain
Rafael E. Carrillo: CSEM PV-center, Rue Jaquet-Droz 1, Neuchâtel 2000, Switzerland
Lluc Casals Canals: Energy Systems Analytics Group, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià de Besòs (Barcelona) 08930, Spain
Baptiste Schubnel: CSEM PV-center, Rue Jaquet-Droz 1, Neuchâtel 2000, Switzerland
Yves Stauffer: CSEM PV-center, Rue Jaquet-Droz 1, Neuchâtel 2000, Switzerland
Ivan Bellanco: Thermal Energy and Building Performance Group, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià de Besòs (Barcelona) 08930, Spain
Cristina Corchero Garcia: Energy Systems Analytics Group, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià de Besòs (Barcelona) 08930, Spain
Jaume Salom: Thermal Energy and Building Performance Group, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià de Besòs (Barcelona) 08930, Spain

Energies, 2020, vol. 13, issue 5, 1-18

Abstract: The electricity sector foresees a significant change in the way energy is generated and distributed in the coming years. With the increasing penetration of renewable energy sources, smart algorithms can determine the difference about how and when energy is produced or consumed by residential districts. However, managing and implementing energy demand response, in particular energy flexibility activations, in real case studies still presents issues to be solved. This study, within the framework of the European project “SABINA H2020”, addresses the development of a multi-level optimization algorithm that has been tested in a semi-virtual real-time configuration. Results from a two-day test show the potential of building’s flexibility and highlight its complexity. Results show how the first level algorithm goal to reduce the energy injected to the grid is accomplished as well as the energy consumption shift from nighttime to daytime hours. As conclusion, the study demonstrates the feasibility of such kind of configurations and puts the basis for real test site implementation.

Keywords: building simulation; energy optimization; flexibility; demand response; demand aggregator; energy management system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/5/1188/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/5/1188/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:5:p:1188-:d:328727

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1188-:d:328727