EconPapers    
Economics at your fingertips  
 

Optimal Design for a Shared Swap Charging System Considering the Electric Vehicle Battery Charging Rate

Lingshu Zhong and Mingyang Pei
Additional contact information
Lingshu Zhong: Department of Electric Power, South China University of Technology, Guangzhou 510641, China
Mingyang Pei: Department of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510641, China

Energies, 2020, vol. 13, issue 5, 1-16

Abstract: Swap charging (SC) technology offers the possibility of swapping the batteries of electric vehicles (EVs), providing a perfect solution for achieving a long-distance freeway trip. Based on SC technology, a shared SC system (SSCS) concept is proposed to overcome the difficulties in optimal swap battery strategies for a large number of EVs with charging requests and to consider the variance in the battery charging rate simultaneously. To realize the optimal SSCS design, a binary integer programming model is developed to balance the tradeoff between the detour travel cost and the total battery recharge cost in the SSCS. The proposed method is verified with a numerical example of the freeway system in Guangdong Province, China, and can obtain an exact solution using off-the-shelf commercial solvers (e.g., Gurobi).

Keywords: shared swap charging system; electric vehicle; operational design; battery charging rate; binary integer programming (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/5/1213/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/5/1213/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:5:p:1213-:d:329157

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1213-:d:329157