An Ensemble Learner-Based Bagging Model Using Past Output Data for Photovoltaic Forecasting
Sunghyeon Choi and
Jin Hur
Additional contact information
Sunghyeon Choi: Enel X, Seoul 04511, Korea
Jin Hur: Department of Energy Grid, Sangmyung University, Seoul 03016, Korea
Energies, 2020, vol. 13, issue 6, 1-16
Abstract:
As the world is aware, the trend of generating energy sources has been changing from conventional fossil fuels to sustainable energy. In order to reduce greenhouse gas emissions, the ratio of renewable energy sources should be increased, and solar and wind power, typically, are driving this energy change. However, renewable energy sources highly depend on weather conditions and have intermittent generation characteristics, thus embedding uncertainty and variability. As a result, it can cause variability and uncertainty in the power system, and accurate prediction of renewable energy output is essential to address this. To solve this issue, much research has studied prediction models, and machine learning is one of the typical methods. In this paper, we used a bagging model to predict solar energy output. Bagging generally uses a decision tree as a base learner. However, to improve forecasting accuracy, we proposed a bagging model using an ensemble model as a base learner and adding past output data as new features. We set base learners as ensemble models, such as random forest, XGBoost, and LightGBMs. Also, we used past output data as new features. Results showed that the ensemble learner-based bagging model using past data features performed more accurately than the bagging model using a single model learner with default features.
Keywords: photovoltaic power forecasting; machine learning; lagged data; ensemble; decision tree; bagging; random forest; XGBoost; Light GBM (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/6/1438/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/6/1438/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:6:p:1438-:d:334593
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().