Energy Calculator for Solar Processing of Biomass with Application to Uganda
Toby Green,
Opio Innocent Miria,
Rolf Crook and
Andrew Ross
Additional contact information
Toby Green: School of Chemical and Process and Engineering, University of Leeds, Leeds LS2 9JT, UK
Opio Innocent Miria: Centre for Renewable Energy and Energy Conservation, Makerere University, Kampala, Uganda
Rolf Crook: School of Chemical and Process and Engineering, University of Leeds, Leeds LS2 9JT, UK
Andrew Ross: School of Chemical and Process and Engineering, University of Leeds, Leeds LS2 9JT, UK
Energies, 2020, vol. 13, issue 6, 1-14
Abstract:
Rural areas of developing countries often have poor energy infrastructure and so rely on a very local supply. A local energy supply in rural Uganda frequently has problems such as limited accessibility, unreliability, a high expense, harmful to health and deforestation. By carbonizing waste biomass streams, available to those in rural areas of developing countries through a solar resource, it would be possible to create stable, reliable fuels with more consistent calorific values. An energy demand calculator is reported to assess the different energy demands of various thermochemical processes that can be used to create biofuel. The energy demand calculator then relates the energy required to the area of solar collector required for an integrated system. Pyrolysis was shown to require the least amount of energy to process 1 kg of biomass when compared to steam treatment and hydrothermal carbonization (HTC). This was due to the large amount of water required for steam treatment and HTC. A resource assessment of Uganda is reported, to which the energy demand calculator has been applied. Quantitative data are presented for agricultural residues, forestry residues, animal manure and aquatic weeds found within Uganda. In application to rural areas of Uganda, a linear Fresnel HTC integration shows to be the most practical fit. Integration with a low temperature steam treatment would require more solar input for less carbonization due to the energy required to vaporize liquid water.
Keywords: biomass; energy resource assessment; developing countries; concentrated solar; thermochemical (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/6/1485/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/6/1485/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:6:p:1485-:d:335287
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().