EconPapers    
Economics at your fingertips  
 

Neoclassical Navier–Stokes Equations Considering the Gyftopoulos–Beretta Exposition of Thermodynamics

Janusz Badur, Michel Feidt and Paweł Ziółkowski
Additional contact information
Janusz Badur: Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Science, Fiszera 14, 80-952 Gdańsk, Poland
Michel Feidt: Laboratory of Energetics & Theoretical & Applied Mechanics (LEMTA), University of Lorraine, 2 Avenue de la Forêt de Haye, 54518 Vandœuvre-lès-Nancy, France
Paweł Ziółkowski: Faculty of Mechanical Engineering, Department of Energy and Industrial Apparatus, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

Energies, 2020, vol. 13, issue 7, 1-34

Abstract: The seminal Navier–Stokes equations were stated even before the creation of the foundations of thermodynamics and its first and second laws. There is a widespread opinion in the literature on thermodynamic cycles that the Navier–Stokes equations cannot be taken as a thermodynamically correct model of a local “working fluid”, which would be able to describe the conversion of “heating” into “working” (Carnot’s type cycles) and vice versa (Afanasjeva’s type cycles). Also, it is overall doubtful that “cycle work is converted into cycle heat” or vice versa. The underlying reason for this situation is that the Navier–Stokes equations come from a time when thermodynamic concepts such as “internal energy” were still poorly understood. Therefore, this paper presents a new exposition of thermodynamically consistent Navier–Stokes equations. Following that line of reasoning—and following Gyftopoulos and Beretta’s exposition of thermodynamics—we introduce the basic concepts of thermodynamics such as “heating” and “working” fluxes. We also develop the Gyftopoulos and Beretta approach from 0D into 3D continuum thermodynamics. The central role within our approach is played by “internal energy” and “energy conversion by fluxes.” Therefore, the main problem of exposition relates to the internal energy treated here as a form of “energy storage.” Within that context, different forms of energy are discussed. In the end, the balance of energy is presented as a sum of internal, kinetic, potential, chemical, electrical, magnetic, and radiation energies in the system. These are compensated by total energy flux composed of working, heating, chemical, electrical, magnetic, and radiation fluxes at the system boundaries. Therefore, the law of energy conservation can be considered to be the most important and superior to any other law of nature. This article develops and presents in detail the neoclassical set of Navier–Stokes equations forming a thermodynamically consistent model. This is followed by a comparison with the definition of entropy (for equilibrium and non-equilibrium states) within the context of available energy as proposed in the Gyftopoulos and Beretta monograph. The article also discusses new possibilities emerging from this “continual” Gyftopoulos–Beretta exposition with special emphasis on those relating to extended irreversible thermodynamics or Van’s “universal second law”.

Keywords: energy; energy conversion; energy storage; energy interactions; balance of energy; energy flux; entropy flux; volume flux; mass flux; neoclassical Navier–Stokes; available energy; irreversibility; Gyftopoulos–Beretta exposition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/7/1656/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/7/1656/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:7:p:1656-:d:340687

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1656-:d:340687