Research on the Roof Advanced Breaking Position and Influences of Large Mining Height Working Face in Shallow Coal Seam
Qingxiang Huang,
Yanpeng He and
Feng Li
Additional contact information
Qingxiang Huang: School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Yanpeng He: School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Feng Li: School of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Energies, 2020, vol. 13, issue 7, 1-15
Abstract:
The large mining height (LMH) in shallow coal seam has been widely applied in the Shenfu coalfield, China. The dynamic load is obvious, and the rib spalling is serious when the LMH working face concerns roof weighting. The advanced breaking position of the roof affects the strength of the ground pressure when the roof is broken. Firstly, based on a large number of actual measurements and physical simulation experiments, the rock formation in the fall zone, where the articulated structure cannot be articulated between the coal seam and the main roof, is called the equivalent immediate roof (EIR). When the mining height increases, the thickness of the EIR increases non-linearly. Next, based on the theory of “elastic foundation beam”, a mechanical model for the advanced breaking of the roof is established in shallow coal seam, and the calculation equation for the advanced breaking position of the roof is given; then, designed and carry out boreholes of the no. 22201 working face in the Zhangjiamao Coal Mine. The theoretical calculation of key strata results (5.6–6.9 m) are in the range of field measurement results (5–8 m). According to the field measurement results, the roof movement of the LMH working face is ahead of the roof weighting. Finally, we define the thickness of EIR and the mining height ratio as the immediate mining ratio k i , which affects the degree of filling of the goaf and determines the structural form of the main roof. When the k i is small, the goaf is fully filled; when the k i is large, the goaf is fully filled. Under the same conditions, different filling rate conditions will form different roof structures. Results of this research can be helpful to control roof weighting and provide early warning of possible safety problems related to the LMH working face in shallow coal seam.
Keywords: shallow coal seam; large mining height; advanced breaking; elastic foundation beam; time and space relationship; filing rate (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/7/1685/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/7/1685/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:7:p:1685-:d:340830
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().