Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil
Mariusz Jerzy Stolarski,
Stefan Szczukowski,
Michał Krzyżaniak and
Józef Tworkowski
Additional contact information
Mariusz Jerzy Stolarski: Centre for Bioeconomy and Renewable Energies, Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
Stefan Szczukowski: Centre for Bioeconomy and Renewable Energies, Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
Michał Krzyżaniak: Centre for Bioeconomy and Renewable Energies, Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
Józef Tworkowski: Centre for Bioeconomy and Renewable Energies, Department of Plant Breeding and Seed Production, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-724 Olsztyn, Poland
Energies, 2020, vol. 13, issue 9, 1-12
Abstract:
Bioenergy plays a major role as a renewable energy source in the European Union. Solid biomass is derived mainly as wood from forests and wood processing plants. Willow plantations set up on marginal lands can be a supplementary source of wood for energy generation. This study aimed to determine the energy value of yield and the thermophysical properties and elemental composition of the biomass of 7-year rotation willow harvested on marginal soil. Three varieties and three clones were cultivated in the Eko-Salix system on three marginal soils in northern Poland: riparian, alluvial soil, classified as heavy complete humic alluvial soil (Obory); organic, peat–muck soil formed from peat (Kocibórz); very heavy mineral clay soil (Leginy). Favourable conditions for obtaining high energy value biomass were at Kocibórz and Obory with a high groundwater level. The energy value of biomass at Leginy was lower than at Kocibórz and Obory (by 33% and 26%, respectively). The Ekotur variety had the significantly highest yield energy value (217 GJ ha −1 year −1 ) among the varieties and clones under study. This feature at Kocibórz and Obory was 288 and 225 GJ ha −1 year −1 , respectively, and 139 GJ ha −1 year −1 at Leginy. Moreover, the biomass of this variety contained less ash (1.1% d.m.), sulphur (0.03% d.m.) and nitrogen (0.28% d.m.), which is beneficial from the energy-use perspective. Notably, the yield energy value of the UWM 095 clone biomass was also high (167 GJ ha −1 year −1 ). This study showed that willow grown in the Eco-Salix system can be a significant source of energy contained in good-quality woody biomass.
Keywords: willow wood; marginal land; biomass; yield energy value; elemental composition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/9/2144/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/9/2144/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:9:p:2144-:d:352645
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().